Flexible Electronics Sensors for Tactile Multi-Touching

نویسندگان

  • Wen-Yang Chang
  • Te-Hua Fang
  • Shao-Hsing Yeh
  • Yu-Cheng Lin
چکیده

Flexible electronics sensors for tactile applications in multi-touch sensing and large scale manufacturing were designed and fabricated. The sensors are based on polyimide substrates, with thixotropy materials used to print organic resistances and a bump on the top polyimide layer. The gap between the bottom electrode layer and the resistance layer provides a buffer distance to reduce erroneous contact during large bending. Experimental results show that the top membrane with a bump protrusion and a resistance layer had a large deflection and a quick sensitive response. The bump and resistance layer provided a concentrated von Mises stress force and inertial force on the top membrane center. When the top membrane had no bump, it had a transient response delay time and took longer to reach steady-state. For printing thick structures of flexible electronics sensors, diffusion effects and dimensional shrinkages can be improved by using a paste material with a high viscosity. Linear algorithm matrixes with Gaussian elimination and control system scanning were used for multi-touch detection. Flexible electronics sensors were printed with a resistance thickness of about 32 μm and a bump thickness of about 0.2 mm. Feasibility studies show that printing technology is appropriate for large scale manufacturing, producing sensors at a low cost.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Tactile Sensor Network System Using a Multiple Sensor Platform with a Dedicated CMOS-LSI for Robot Applications †

Robot tactile sensation can enhance human-robot communication in terms of safety, reliability and accuracy. The final goal of our project is to widely cover a robot body with a large number of tactile sensors, which has significant advantages such as accurate object recognition, high sensitivity and high redundancy. In this study, we developed a multi-sensor system with dedicated Complementary ...

متن کامل

Wearable Microfluidic Diaphragm Pressure Sensor for Health and Tactile Touch Monitoring.

Flexible pressure sensors have many potential applications in wearable electronics, robotics, health monitoring, and more. In particular, liquid-metal-based sensors are especially promising as they can undergo strains of over 200% without failure. However, current liquid-metal-based strain sensors are incapable of resolving small pressure changes in the few kPa range, making them unsuitable for...

متن کامل

iCub Tactile Sensing System: Current State and Future Directions

Robots that can dexterously manipulate objects are important in applications such as domestic robots, industrial robots and emergency response robots. Several tactile sensors have been proposed, however, only a few can be fully integrated with robotic hands. A typical problem that prevents integration is lack of sensors that can be deployed on curved surfaces. In this paper we present a new fin...

متن کامل

A miniaturized and flexible optoelectronic sensing system for a tactile skin

This paper describes the development of a hybrid sensing module consisting of a general purpose electro-optical converter and three MEMS force sensors, to be integrated into flexible substrates for tactile skin applications. The features of the converter, namely its flexible and thin substrate and small dimensions, programmability, optical coding and transmission of the information allow this v...

متن کامل

Flexible PZT Thin Film Tactile Sensor for Biomedical Monitoring

This paper presents the development of tactile sensors using the sol-gel process to deposit a PZT thin-film from 250 nm to 1 μm on a flexible stainless steel substrate. The PZT thin-film tactile sensor can be used to measure human pulses from several areas, including carotid, brachial, finger, ankle, radial artery, and the apical region. Flexible PZT tactile sensors can overcome the diverse top...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره 9  شماره 

صفحات  -

تاریخ انتشار 2009